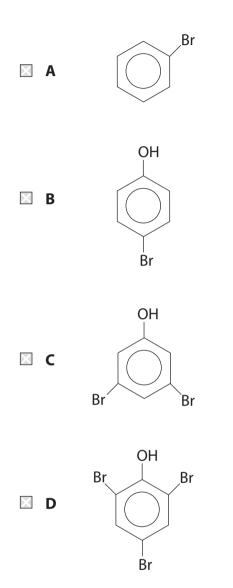
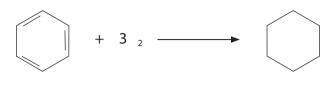
- **1** The total number of compounds with the structural formula $C_6H_3CH_3(NO_2)_2$, which contain a benzene ring, is
 - A four.
 - **B** five.
 - C six.
 - D seven.

2 Safranal is one of the substances that contributes to the aroma of saffron.



Separate samples of safranal were tested with bromine water, 2,4-dinitrophenylhydrazine and Fehling's solution.


What are the final observations when safranal is tested with each of those reagents?

		Bromine water 2,4-dinitrophenylhydrazine		Fehling's solution	
×	A	orange solution orange solution		red precipitate	
\times	В	colourless solution orange precipitate		red precipitate	
X	с	orange solution orange solution		blue solution	
\mathbf{X}	D	colourless solution	orange precipitate	blue solution	

3 The structure of the organic product of the reaction between phenol and excess bromine water is

4 If it is assumed that the structure of benzene has three localised double bonds (structure X), the calculated standard enthalpy change of hydrogenation is -360 kJ mol⁻¹.

structure X

The actual standard enthalpy change of hydrogenation of benzene is -208 kJ mol⁻¹.

From these data, it can be deduced that the

- A actual benzene structure is kinetically more stable than structure **X** as it requires a high activation energy to react.
- **B** actual benzene structure is thermodynamically more stable than structure **X** as it has a lower enthalpy content.
- **C** structure **X** is kinetically unstable as it undergoes addition reactions at room temperature.
- **D** structure **X** is thermodynamically more stable than the actual benzene structure as the standard enthalpy change of hydrogenation is more exothermic.

(Total for Question = 1 mark)

- **5** In the reaction of benzene with chloromethane, aluminium chloride is added because it reacts with
 - A benzene to produce an electrophile.
 - **B** benzene to produce a nucleophile.
 - **C** chloromethane to produce a nucleophile.
 - **D** chloromethane to produce an electrophile.

- **6** Which of the following reacts with benzene under suitable conditions to form $C_6H_5COC_6H_5$?
 - \square **A** C₆H₅CHO
 - \blacksquare **B** C₆H₅COOH
 - \square **C** C₆H₅CH₂OH
 - \square **D** C₆H₅COCI

7 Benzene is converted to benzenesulfonic acid, C₆H₅SO₃H, by reaction with

- \square **A** sulfuric(IV) acid, H₂SO₃.
- \square **B** sulfuric(VI) acid, H₂SO₄.
- **C** sulfur dioxide dissolved in sulfuric(IV) acid.
- **D** sulfur trioxide dissolved in sulfuric(VI) acid.

(Total for Question = 1 mark)

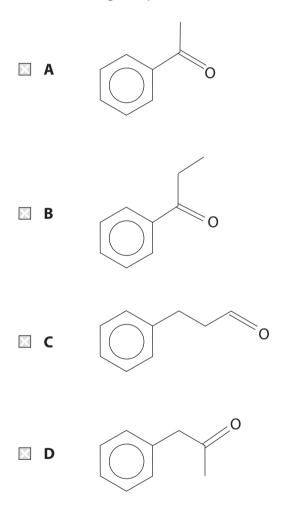
8 Benzene reacts with chlorine to produce 1,2,3,4,5,6-hexachlorocyclohexane, C₆H₆Cl₆, by

- A free radical addition.
- **B** free radical substitution.
- **C** electrophilic addition.
- **D** electrophilic substitution.

- **9** Benzene reacts with a nitrating mixture of concentrated nitric and sulfuric acids. Which species is **least** likely to be present in the nitrating mixture?
 - A NO₃-
 - **■ B** H₃O⁺
 - C HSO₄⁻
 - \square **D** NO₂⁺

- **10** Benzene ($T_b = 80.1 \degree C$) has a higher boiling temperature than ethanol ($T_b = 78.5 \degree C$). This is because the
 - A benzene ring is stabilised.
 - **B** London forces between benzene molecules are stronger than the hydrogen bonds between ethanol molecules.
 - C hydrogen bonds between benzene molecules are stronger than the hydrogen bonds between ethanol molecules.
 - **D** C–H bonds in benzene are stronger than the C–H bonds in ethanol.

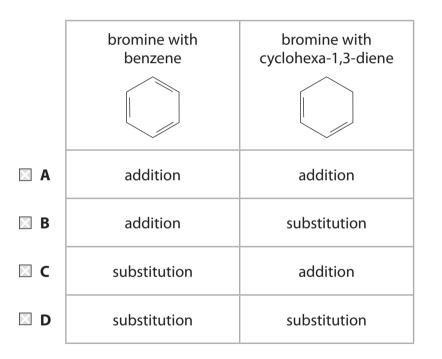
(Total for Question = 1 mark)


- **11** When benzene reacts with fuming sulfuric acid, which species is most likely to be the electrophile?
 - \blacksquare **A** H₃O⁺
 - \blacksquare **B** SO₃
 - C HSO₄⁻
 - \square **D** SO_4^{2-}

12 Benzene reacts with propanoyl chloride in the presence of a suitable catalyst.

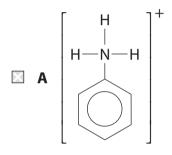
The skeletal formula of propanoyl chloride is

What is the organic product of this reaction?

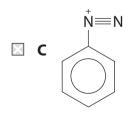

(Total for Question = 1 mark)

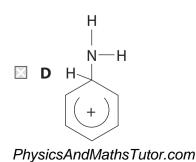
13 The total number of isomers of dibromobenzene, $C_6H_4Br_2$, containing a benzene ring is

A 2
B 3
C 4
D 5


(Total for Question = 1 mark)

14 Bromine reacts with benzene on heating in the presence of a catalyst and with cyclohexa-1,3-diene in the cold. The types of reaction involved are




- **15** Phenylamine, C₆H₅NH₂, and benzene react with bromine in a similar way, but phenylamine reacts much faster. This increased rate of reaction is most likely due to the effect that the
 - A electronegativity of the nitrogen has on the benzene ring.
 - **B** electronegativity of the nitrogen has on the bromine molecule.
 - **C** lone pair of electrons of the nitrogen has on the benzene ring.
 - **D** lone pair of electrons of the nitrogen has on the bromine molecule.

16 When dilute nitric(V) acid, HNO₃, reacts with phenylamine, the ion formed is

- 17 Phenol reacts with bromine water whereas benzene reacts with bromine in the presence of iron.
 - (a) The mechanism for both these reactions is
 - A electrophilic substitution.
 - **B** electrophilic addition.
 - \square C nucleophilic substitution.
 - **D** nucleophilic addition.
 - (b) In the reaction of benzene with bromine, iron
 - A acts as a heterogeneous catalyst.
 - **B** acts as a homogeneous catalyst.
 - \square C reacts with the bromine to make iron(III) bromide, FeBr₃.
 - **D** allows bromine to attack the hydrogen atoms on benzene more readily.
 - (c) Bromine reacts more readily with phenol than with benzene because the OH group on phenol
 - \square **A** is a good leaving group.
 - **B** attracts the bromine particles more readily.
 - \square C is a good nucleophile.
 - **D** increases the electron density of the ring.

(1)

(1)

(1)

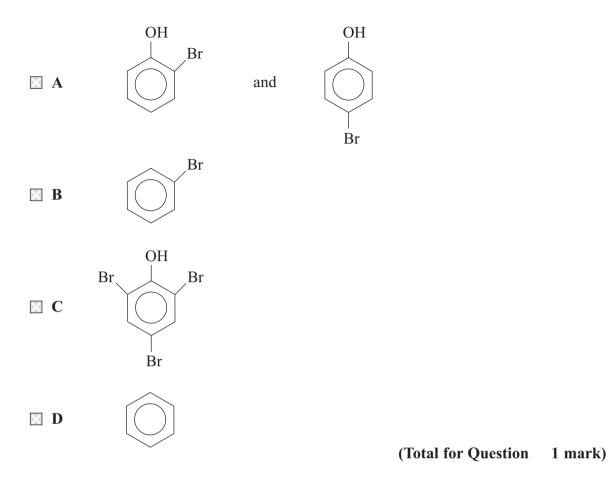
- **18** If phenol and benzene are tested separately with bromine water, you would expect to see that
 - A benzene and phenol would both decolorize bromine water.
 - **B** benzene would decolorize bromine water, but phenol would not do so.
 - C neither benzene nor phenol would decolorize bromine water.
 - **D** benzene would not decolorize bromine water, but phenol would do so.

- **19** Which of the following shows the generation of the electrophile in the reaction of benzene with ethanoyl chloride in the presence of anhydrous aluminium chloride?
 - $\square A CH_3COCl + AlCl_3 \rightarrow [CH_3CO]^+ + AlCl_4^-$
 - $\square \mathbf{B} \quad \mathrm{CH}_{3}\mathrm{COCl} \quad + \ \mathrm{AlCl}_{3} \rightarrow [\mathrm{CH}_{3}\mathrm{CO}]^{-} \quad + \ \mathrm{AlCl}_{4}^{+}$
 - $\square C \quad CH_3CH_2Cl + AlCl_3 \rightarrow [CH_3CH_2]^+ + AlCl_4^-$
 - $\square \mathbf{D} \quad CH_3COOCl \ + \ AlCl_3 \rightarrow [CH_3COO]^- \ + \ AlCl_4^+$

(Total for Question = 1 mark)

- 20 Bromine reacts much faster with phenylamine than with benzene. This is because
 - A N—H bonds are weaker than C—H bonds.
 - **B** nitrogen is very electronegative.
 - C the benzene ring has greater electron density in phenylamine than in benzene.
 - **D** phenylamine reacts by addition whereas benzene reacts by substitution.

- 21 X-ray diffraction provides evidence that benzene molecules have
 - **A** delocalized π electrons.
 - **B** carbon–carbon bonds that are all the same length.
 - **C** lower thermodynamic stability than molecules of 1,3,5-cyclohexatriene.
 - **D** greater thermodynamic stability than molecules of 1,3,5-cyclohexatriene.


- **22** Benzene is nitrated using a mixture of concentrated nitric and sulfuric acids. The sulfuric acid
 - A acts as a solvent for the benzene and the nitric acid.
 - **B** protonates the benzene to speed up the reaction.
 - **C** protonates the nitric acid which acts as a base.
 - **D** reacts with the benzene to form a benzenesulfonic acid intermediate.

(Total for Question = 1 mark)

23 For the nitration of phenol, which is the most suitable set of conditions and the reason for its use?

		Conditions	Reactivity of phenol to electrophiles compared with benzene
\times	Α	dilute nitric acid at room temperature	more reactive
\times	В	concentrated nitric and sulfuric acid at room temperature	more reactive
\times	С	concentrated nitric and sulfuric acid at 55 °C	the same
\times	D	dilute nitric acid and dilute sulfuric acid at room temperature	less reactive

24 Phenol reacts with excess bromine water to give as the organic product(s)

